
SA WG2 Meeting #128bis
S2-188944
20 – 24 August, Sophia Antipolis, France
was S2-188708, 8001
Source:
Ericsson

Title:
Solution 7 updates
Document for:
Approval
Agenda Item:
6.19

Work Item / Release:
FS_eSBA / Rel-16

Abstract of the contribution: This contribution analyses some aspects of the solution 7 to KI#4 and proposes the inclusion of the Optimistic Concurrency Control (OCC), as well some modifications along the solution description.
1 Discussion

The objective of KI#4 is to

When the 5GC services are deployed in a cloud environment, it is expected that the overall reliability of the system shall be at least the same as the reliability of today's non-cloud based systems. Therefore, the service-based architecture should be designed in a way that seamless replacement, addition or removal of services is possible and does not require specific (re-)configuration (e.g. point to point interfaces or UE specific binding) of both the running and the new component(s).
1) Race condition handling considerations:

At SA2 #128 a concern has been raised about the adequacy of the solution to handle race conditions. In Solution 7 is argued that race conditions can be handled as “Update operations could e.g. lock the context data for time it is processed by a service instance”
A simple example of a potential race conditions where locking the context data would not solve entirely the race condition is shown in the figure below illustrating an example of “circular deadlock”, in case of concurring paging and service request for a UE:

[image: image1.wmf]U

E

R

A

N

A

M

F

/

1

A

M

F

/

2

S

M

F

/

2

S

M

F

/

1

U

P

F

D

o

w

n

l

i

n

k

D

a

t

a

1

:

D

a

t

a

N

o

t

i

f

i

c

a

t

i

o

n

2

:

L

o

c

k

p

r

o

c

e

d

u

r

e

(

P

a

g

i

n

g

)

3

:

D

a

t

a

N

o

t

i

f

i

c

a

t

i

o

n

A

c

k

4

:

S

e

r

v

i

c

e

r

e

q

u

e

s

t

5

:

L

o

c

k

p

r

o

c

e

d

u

r

e

(

S

e

r

v

i

c

e

r

e

q

u

e

s

t

)

6

:

N

s

m

f

_

P

D

U

S

e

s

s

i

o

n

_

U

p

d

a

t

e

S

M

C

o

n

t

e

x

t

R

e

q

u

e

s

t

7

:

L

o

c

k

p

e

n

d

i

n

g

(

S

e

r

v

i

c

e

r

e

q

u

e

s

t

)

s

e

t

u

p

c

a

l

l

b

a

c

k

8

:

N

a

m

f

_

C

o

m

m

u

n

i

c

a

t

i

o

n

_

N

1

N

2

M

e

s

s

a

g

e

T

r

a

n

s

f

e

r

9

:

L

o

c

k

p

e

n

d

i

n

g

(

P

a

g

i

n

g

)

;

s

e

t

u

p

c

a

l

l

b

a

c

k

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

6

.

3

.

4

As illustrated above the locking of the context data in step 2 and 5, has created a deadlock in step 7 and 9. Different techniques to solve this kind of deadlocks are available, and may be different depending on the kind of race conditions. To avoid possible conflict between different solutions, a solution for every race condition case would need to be standardized. And, in some cases, standard solutions for race conditions can be complex.
Moreover, today popular practice in web applications is to the largest possible extent avoid locking the data and rather adopt the so called Optimistic Concurrency Control (OCC), i.e try and roll back in case of failure. In fact, strict locking is considered harmful for cloud native applications as it would slow down every process affecting the performance of every operation to address conflicts that are rare to happen. The illustration below exemplifies the difference between locking and the OCC techniques:

[image: image2.png]
[image: image3.png]
As illustrated above the OCC allows to parallelize the operations towards application 1 and 2 instead of waiting each other, and if a failure in updating the record occur, a cancel/rollback operation is performed.

In essence race conditions may be handled through:

· Procedure lock: requires standardized solution to avoid circular deadlock, which may impact the overall performance

· OCC: needs standardized methods to handle consistent rollback for all services & procedures

2. Proposal

The following changes to TR 23.742 are proposed

* * * Start of Change * * *

6.7.2.1
Solution aspects

The solution proposed here contains two main aspects to address the above issues:

-
Specifying the NFs / NF services as "unsticky" so that long-living bindings between NF / NF service instances are avoided.

-
Specifying the NFs / NF services as "stateless" (separation of compute and storage resources), i.e. NF / NF service instances store state / service context information in an external storage layer (e.g. UDSF) when the state / service context is stable (e.g. at the completion of a transaction).
Thereby, failed instances can effortlessly be replaced by newly instantiated or already existing ones, which can then promptly recover the stored state / service context from the storage layer when and as needed.

6.7.2.2
Issues related to long-living bindings between NFs / NF services

Today the UE gets assigned serving NFs (e.g. based on the UE's location). The UE will continue to be served by these NF instances until a trigger to re-allocate a serving NF occurs (e.g. UE moves out of the service area of its current serving NF instance(s)). Thereby bindings are created between the UE and its serving NF instances, and orderly re-bindings (i.e. change of serving NF instance) can only occur by system procedures (e.g. mobility) specified in 3GPP.

In the Rel-15 5GC, serving instances of AMF, SMF, SMSF and PCF NF/NF services are selected per UE. This creates UE specific bindings between the selected AMF, SMF, SMSF and PCF NF/NF services instances.

Furthermore, the identities of the serving NFs/NF services are stored in the UDM/UDR NF/NF services, which creates another set of bindings in the 5GC.

Loss of any of the UE's serving instances destroys the associated bindings and thereby breaks the UE's service context environment in the network, causing the correlated customer service to fail.

In a cloudified 5G system, a long-living binding to a dedicated NF or NF service instance always means a long-living binding to a dedicated SW instance that represents the NF / NF service. Consequently, the above system and service impact may occur any time a SW instance is lost (e.g. due to HW failure or SW bug), but it is only the case when there is a one-to-one assignment of an NF/NF service to an individual HW/SW instance, which could be avoided by different solutions, e.g. a pool of SW/HW instances are offered by a single point of access as a single NF/NF service.

In case there is a one-to-one assignment of an NF/NF service to an individual HW/SW instance, a summary of identified problems and challenges with long-living bindings in the cloud (non-exhaustive list) can be given as follows:

-
Complex scaling operations across the network:

-
when scaling out:
-
make the new instances known to other services to 'start using them', this leads to high configuration effort;

-
need to transfer bindings from already existing instances to new ones, this leads to the need for complex reallocation procedures.

-
when scaling in:
-
make other instances aware that the to-be-removed instance shall no longer be used;

-
transfer bindings to other instances or await orderly unbinding (e.g. UE detaches).

-
Need for load-(re)balancing:

-
with long-living bindings a load distribution for new bindings has to be done;
-
in case of unequal load of service instances a dedicated re-distribution of load, implying transfer of the binding(s), has to be done (additional load re-distribution mechanism needed).
-
in case of failure:

-
customer impact is likely in case of service instance failure;
-
reallocation (transfer of bindings) similar to scale-in but additional challenges need to be handled due to the "unexpected scale in";
-
complex configuration or complex automation procedures.
6.7.2.3
Issues related to stateful NFs

A typical NF / NF service is defined by its service logic (executed by some compute resources) and some service context data (located in a storage resource) on which the service logic is applied. The service logic data is well-defined in 3GPP specifications for the 5G system, while the service context/session data is defined only when it is required for external interactions with other NF/NF services via standard interfaces, e.g. it is defined the UE permanent data that is stored in UDR that is required by another entity to perform its service logic; while it is not defined the internal session/context data that is required internally by each NF/NF service to perform its service logic.

Historically, 3GPP network entities retain service contexts locally even when they are not used, i.e. not currently being subject to service logic processing.

If a NF / NF service instance holds unused service context information (e.g. a UE's MM context) internally (i.e. compute and storage resources are not separated) and the instance becomes unavailable (due to HW or SW failure) the service context data is lost and the customer's service is impacted.
As defined in 3GPP UDC (from Rel-13 on), subscription data is stored externally, while in Rel-15 Storage architecture solution indicates that not only subscription data, but as well policy data, application data and structured data for exposure is stored externally in UDR. Apart from that, internal session/context data may be stored in external storage resources by each implementation.
In case service data is stored in the same SW/HW entity as the one used for processing (logic and data is not separated), then identified problems and challenges with NF / NF service internal storage of service context information in the cloud are similar to the issues listed in relation of long-living bindings, as also the service contexts need to be managed in a similar way to the bindings and case of scaling, load (re-)balancing or failure recovery. In addition, local storage of service contexts within NF instances / NF service instances limits the use of such context data by other entities as it is necessary to have knowledge about the location of the desired context data within a specific NF instance / NF service instance.
6.7.2.4
Solution Preconditions, Assumptions and Requirements

Preconditions:

-
the 5G system is made up a suitable set of 3GPP defined "modules" (NFs and/or NF services) that allow fast spin-up and teardown of instances.

Assumptions:

-
There exists a suitable storage layer/resources that can be used by all relevant NF / NF service instances for storing and retrieving service context data.

-
The service context data stored in the storage layer corresponds to the 3GPP defined NF / NF service context data that a NF / NF service processes when applying its service logic. This corresponds to data that is stored according to Rel-15 storage architecture into UDR, plus session/context data that may be stored externally (e.g. in UDSF).
-
Adequate reliability and availability of the storage layer can be achieved and is realised by methods internal to the storage layer.

NOTE 1:
the existence of NFs and/or NF services in Rel-16 is determined under key issue 1.

Requirements:

-
The service context information that is stored in the storage layer and necessary for multivendor interoperability between services shall be structured and standardised in 3GPP, similar to e.g. a UE context that is passed between AMFs during a relocation procedure. This corresponds to the data defined to be stored in Rel-15 UDR.
-
The service context information that is stored in the storage layer and necessary for recovery of instances of the same NF/NF service, is required to be standardized by 3GPP to achieve multi-vendor deployments of instances of the same NF/NF service. This will correspond to new data to be stored in UDR (as long as this data is meant to be standardized).

-
Part of the service context information that is stored in the storage layer may be shared by other types of NF/NF services, if so, it is required to be standardized by 3GPP. This will correspond to new data to be stored in UDR (as long as this data is meant to be standardized).

-
Deployment of the storage layer (e.g. UDR, UDSF) ensures that stored information is available as close to the requesting NF instance/NF service instance as needed.

NOTE 2:
This does not exclude any additional vendor-specific data being stored in the storage layer.

6.7.2.5
High-level Solution Architecture

It is proposed that:

-
Any available specific instance of a requested NF/NF service type within a slice or shared among available slices can handle an incoming message dedicated to that service, that means:
-
NF instance/NF service instances do not store other instance's IDs for sub-sequent requests.
-
Requests by service consumers do not contain NF instance/NF service instance IDs but only the type of the requested service.
-
How the specific NF instance/NF service instance that shall handle a particular request is selected or if and by who it needs to be selected, and what information to use in the selection process, depends on the inter-NF / NF service communication method (cf. key issue 3) and is out of scope of this solution.

NOTE 3:
NF/NF service type is a unique identification of the service.

-
When the service context information reaches stable state (based on the needs for recovery of an instance of this service), then it shall be stored in a storage layer external to the service instance; that means:

-
Any authorized service instance of the same type can access the service context data.

-
When the service context information reaches stable state (for the data that may be shared by other types of NF/NF services), then it shall be stored in a storage layer external to the service instance; that means:

-
Any authorized service instance of a different type can access the service context data.

Examples of service context information are:
-
Subscription -, policy -and application specific data.

-
Mobility management data.
-
Session/context data (related to user subscription and its UE session-, registration-and connection state).
-
standardized or exchanged as part of standardized NF service interfaces with other NFs. Represents a stable state, that can be recovered/re-created by a NF service in failure scenarios.

Dependencies to other solutions to key issues:

-
Solution 2 in the key issue 3 "Improvements to Service Framework" relies on the unstickiness and the statelessness of service instances (see clause 6.2.2.3 pre-condition).

* * * Next Change * * *

6.7.2.5.2
Storage layer aspects

The storage layer is considered to be primary and only storage for stable context data and offers both to store opaque (vendor specific structured or unstructured) context data as well as standardized structured context data. The minimum context data that need to be standardized is determined by what data are required to support multi-vendor interoperability.
On potential race conditions related to the storage layer:

-
Read operation of any context data in the storage layer is possible at any point in time and state of the NF service instances.

-
Update operations could e.g. lock the context data for time it is processed by a service instance. However, locking may slow down every process affecting the performance of every operation to address conflicts that are rare to happen, and additionally not potential race conditions can be solved by locking.
A simple example of a potential race conditions where locking the context data would not solve entirely the race condition is shown in the figure below illustrating an example of “circular deadlock”, in case of concurring paging and service request for a UE:

[image: image4.wmf]U

E

R

A

N

A

M

F

/

1

A

M

F

/

2

S

M

F

/

2

S

M

F

/

1

U

P

F

D

o

w

n

l

i

n

k

D

a

t

a

1

:

D

a

t

a

N

o

t

i

f

i

c

a

t

i

o

n

2

:

L

o

c

k

p

r

o

c

e

d

u

r

e

(

P

a

g

i

n

g

)

3

:

D

a

t

a

N

o

t

i

f

i

c

a

t

i

o

n

A

c

k

4

:

S

e

r

v

i

c

e

r

e

q

u

e

s

t

5

:

L

o

c

k

p

r

o

c

e

d

u

r

e

(

S

e

r

v

i

c

e

r

e

q

u

e

s

t

)

6

:

N

s

m

f

_

P

D

U

S

e

s

s

i

o

n

_

U

p

d

a

t

e

S

M

C

o

n

t

e

x

t

R

e

q

u

e

s

t

7

:

L

o

c

k

p

e

n

d

i

n

g

(

S

e

r

v

i

c

e

r

e

q

u

e

s

t

)

s

e

t

u

p

c

a

l

l

b

a

c

k

8

:

N

a

m

f

_

C

o

m

m

u

n

i

c

a

t

i

o

n

_

N

1

N

2

M

e

s

s

a

g

e

T

r

a

n

s

f

e

r

9

:

L

o

c

k

p

e

n

d

i

n

g

(

P

a

g

i

n

g

)

;

s

e

t

u

p

c

a

l

l

b

a

c

k

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

6

.

3

.

4

As illustrated above the locking of the context data in step 2 and 5, has created a deadlock in step 7 and 9.
Different techniques to solve this kind of deadlocks are available, and may be different depending on the kind of race conditions. To avoid possible conflict between different solutions, solutions for most race condition case would need to be standardized, and mechanisms to remove deadlocks for cases not caught by standards. If OCC (Optimistic Concurrency Control) is used, this needs standardized methods to handle consistent rollback for all services and procedures.

In essence, race conditions may be handled through following methods, both having some drawbacks to consider:

-
Procedure lock: that requires standardized solution to avoid circular deadlock, which may impact the overall performance

-
OCC: that requires standardized methods to handle consistent rollback for all services & procedures
-
Whether race conditions during interaction of the storage layer and NF services instances can occur or not depends on how the services and procedures are defined and on the amount of shared context. These need to be addressed on a case by case basis during normative phase.
NOTE:
race conditions can occur only as long as there is transient state within an NF service instance as described below. Race conditions cause by conflicting producer NF service instance selection by NF service consumers cannot occur because as per solution 2 NF service consumers do not select producer NF service instances (this is done by the service framework)

Regarding local knowledge of data:

Local knowledge of data in the sense of locally at the NF service instance is only required until a procedure is completed (i.e. while it has some transient state) and a stable state can be stored to the data layer. Storage layer is assumed to be a distributed database and it is up to implementation/a deployment issue how the synchronization between any instances of the storage layer is achieved.

Relation to network slicing:
In case of network slicing, an instance of the storage layer can either serve multiple network slices or be slice specific (based on operator deployment).
Editor's note: how to handle timers and triggers for context stored in the storage layer and whether this is an internal storage layer functionality or a functionality of a separate service to be defined as part of modularization key issue is FFS.
End of changes
_1595756533.bin

